Font size increaseFont size decrease

Scientific Publications 

The UAE Research Program for Rain Enhancement Science awardees have published several scientific articles in peer reviewed international journals during its 3 Cycles.

 

First Cycle Projects

Project Title: Nanotechnology to Develop Novel Cloud Seeding Materials for Rain Enhancement

Final Project Report 

  1. Tai, Y., Liang, H., Zaki, A., El Hadri, N., Abshaev, A.M., Huchunaev, B.M., Griffiths, S., Jouiad, M. and Zou, L., 2017. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS nano11(12), pp.12318-12325. https://doi.org/10.1021/acsnano.7b06114    
  2. Lompar, M., Ćurić, M. and Romanic, D., 2017. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols. Atmospheric Research194, pp.164-177. https://doi.org/10.1016/j.atmosres.2017.04.037
  3. Lompar, M., Ćurić, M., Romanic, D., Zou, L. and Liang, H., 2018. Precipitation enhancement by cloud seeding using the shell structured TiO2/NaCl aerosol as revealed by new model for cloud seeding experiments. Atmospheric research212, pp.202-212. https://doi.org/10.1016/j.atmosres.2018.05.021
  4. Ćurić, M., Lompar, M. and Romanic, D., 2019. Implementation of a novel seeding material (NaCl/TiO2) for precipitation enhancement in WRF: Description of the model and spatiotemporal window tests. Atmospheric Research230, p.104638. https://doi.org/10.1016/j.atmosres.2019.104638
  5. Liang, H., Abshaev, M.T., Abshaev, A.M., Huchunaev, B.M., Griffiths, S. and Zou, L., 2019. Water vapor harvesting nanostructures through bioinspired gradient-driven mechanism. Chemical Physics Letters728, pp.167-173. https://doi.org/10.1016/j.cplett.2019.05.008
  6. Ćurić, M., Lompar, M., Romanic, D., Zou, L. and Liang, H., 2019. Three-Dimensional Modelling of Precipitation Enhancement by Cloud Seeding in Three Different Climate Zones. Atmosphere10(6), p.294. https://doi.org/10.3390/atmos10060294
  7. Liang, H., Möhler, O., Griffiths, S. and Zou, L., 2019. Enhanced Ice Nucleation and Growth by Porous Composite of RGO and Hydrophilic Silica Nanoparticles. The Journal of Physical Chemistry C124(1), pp.677-685. https://doi.org/10.1021/acs.jpcc.9b09749
  8. Bermeo, M., El Hadri, N., Ravaux, F., Zaki, A., Zou, L. and Jouiad, M., 2020. Adsorption Capacities of Hygroscopic Materials Based on NaCl-TiO2 and NaCl-SiO2 Core/Shell Particles. Journal of Nanotechnology2020. https://doi.org/10.1155/2020/3683629

 

Project Title:Advanced Study on Precipitation Enhancement in Arid and Semi-Arid Regions

Final Project Report 

  1. Hashimoto, A., Murakami, M. and Haginoya, S., 2017. First application of JMA-NHM to meteorological simulation over the United Arab Emirates. SOLA13, pp.146-150. http://doi.org/10.2151/sola.2017-027
  2. Hashimoto, A., Orikasa, N., Tajiri, T. and Murakami, M., 2017. Numerical prediction experiment over the United Arab Emirates by using JMA-NHM. JCAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling47, pp.5-07. http://bluebook.meteoinfo.ru/uploads/2017/docs/05_Hashimoto_Akihiro_Numerical_prediction_experiment_over_the_UAE.pdf
  3. Jung, W., Murakami, M., Shinoda, T. and Kato, M., 2018. Optimization of land surface parameters for weather simulations over arid and semi-arid regions. SOLA. https://doi.org/10.2151/sola.2018-035
  4. Kuo, T.H., Murakami, M., Tajiri, T. and Orikasa, N., 2019. Cloud condensation nuclei and immersion freezing abilities of Al2O3 and Fe2O3 particles measured with the Meteorological Research Institute’s Cloud Simulation Chamber. Journal of the Meteorological Society of Japan. Ser. II. https://doi.org/10.2151/jmsj.2019-032   
  5. Kumar, K.N. and Suzuki, K., 2019. Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sensing of Environment228, pp.90-104. https://doi.org/10.1016/j.rse.2019.04.024
  6. Orikasa, N., Murakami, M., Tajiri, T., Zaizen, Y. and Shinoda, T., 2020. In Situ Measurements of Cloud and Aerosol Microphysical Properties in Summertime Convective Clouds over Eastern United Arab Emirates. SOLA. https://doi.org/10.2151/sola.2020-032

 

Project Title:Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)

Final Project Report 

  1. Aldababseh, A., Temimi, M., Maghelal, P., Branch, O. and Wulfmeyer, V., 2018. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability10(3), p.803. https://doi.org/10.3390/su10030803
  2. Schwitalla, T., Branch, O. and Wulfmeyer, V., 2020. Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quarterly Journal of the Royal Meteorological Society146(727), pp.846-869. https://doi.org/10.1002/qj.3711
  3. Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., Wulfmeyer, V., Zhan, X., Liu, J. and Mandous, A.A., 2019. Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Natural Hazards and Earth System Sciences19(6), pp.1129-1149. https://doi.org/10.5194/nhess-19-1129-2019
  4. Branch, O., Behrendt, A., Gong, Z., Schwitalla, T. and Wulfmeyer, V., 2020. Convection Initiation over the Eastern Arabian Peninsula. Meteorologische Zeitschrift29, pp.67-77. https://doi.org/10.1127/metz/2019/0997   

 

 

 

Second Cycle Projects

Project Title: Microphysics of Convective Clouds and the Effects of Hygroscopic Seeding

Final Project Report 

  1. Morrison, H. and Peters, J.M., 2018. Theoretical expressions for the ascent rate of moist deep convective thermals. Journal of the Atmospheric Sciences75(5), pp.1699-1719. https://doi.org/10.1175/JAS-D-17-0295.1
  2. Morrison, H., Peters, J.M., Varble, A.C., Hannah, W.M. and Giangrande, S.E., 2020. Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. Journal of the Atmospheric Sciences77(11), pp.3637-3660. https://doi.org/10.1175/JAS-D-19-0243.1
  3. Peters, J.M., Morrison, H., Varble, A.C., Hannah, W.M. and Giangrande, S.E., 2020. Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. Journal of Atmospheric Sciences77(11), pp.3661-3681. https://doi.org/10.1175/JAS-D-19-0244.1
  4. Morrison, H., van Lier‐Walqui, M., Fridlind, A.M., Grabowski, W.W., Harrington, J.Y., Hoose, C., Korolev, A., Kumjian, M.R., Milbrandt, J.A., Pawlowska, H. and Posselt, D.J., 2020. Confronting the challenge of modeling cloud and precipitation microphysics. Journal of advances in modeling earth systems12(8), p.e2019MS001689. https://doi.org/10.1029/2019MS001689
  5. Grabowski, W.W. and Morrison, H., 2020. Do ultrafine cloud condensation nuclei invigorate deep convection?. Journal of Atmospheric Sciences77(7), pp.2567-2583. https://doi.org/10.1175/JAS-D-20-0012.1
  6. Pardo, L.H., Morrison, H., Machado, L.A., Harrington, J.Y. and Lebo, Z.J., 2020. Drop size distribution broadening mechanisms in a bin microphysics Eulerian model. Journal of the Atmospheric Sciences77(9), pp.3249-3273. https://doi.org/10.1175/JAS-D-20-0099.1

 

Project Title: Optimization of Aerosol Seeding In rain enhancement Strategies (OASIS)

Final Project Report 

  1. Callewaert, S., Vandenbussche, S., Kumps, N., Kylling, A., Shang, X., Komppula, M., Goloub, P. and Mazière, M.D., 2019. The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and evaluation. Atmospheric Measurement Techniques12(7), pp.3673-3698. https://doi.org/10.5194/amt-12-3673-2019
  2. Roudsari, G., Reischl, B., Pakarinen, O.H. and Vehkamäki, H., 2019. Atomistic Simulation of Ice Nucleation on Silver Iodide (0001) Surfaces with Defects. The Journal of Physical Chemistry C124(1), pp.436-445. https://doi.org/10.1021/acs.jpcc.9b08502   
  3. Filioglou, M., Giannakaki, E., Backman, J., Kesti, J., Hirsikko, A., Engelmann, R., O'Connor, E., Leskinen, J.T., Shang, X., Korhonen, H. and Lihavainen, H., 2020. Optical and geometrical aerosol particle properties over the United Arab Emirates. Atmospheric Chemistry and Physics20(14), pp.8909-8922. https://doi.org/10.5194/acp-20-8909-2020
  4. Tonttila, J., Afzalifar, A., Kokkola, H., Raatikainen, T., Korhonen, H. and Romakkaniemi, S., 2021. Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA. Atmospheric Chemistry and Physics21(2), pp.1035-1048. https://doi.org/10.5194/acp-21-1035-2021

 

Project Title:Electrical Aspects of Rain Generation

  1. Nicoll, K., Harrison, G., Marlton, G. and Airey, M., 2020. Consistent dust electrification from Arabian Gulf sea breezes. Environmental Research Letters15(8), p.084050. https://doi.org/10.1088/1748-9326/ab9e20
  2. Harrison, R.G. and Marlton, G.J., 2020. Fair weather electric field meter for atmospheric science platforms. Journal of Electrostatics107, p.103489. https://doi.org/10.1016/j.elstat.2020.103489
  3. Harrison, R.G., Nicoll, K.A., Ambaum, M.H., Marlton, G.J., Aplin, K.L. and Lockwood, M., 2020. Precipitation modification by ionization. Physical review letters124(19), p.198701. https://doi.org/10.1103/PhysRevLett.124.198701
  4. Harrison, R. Giles, Keri A. Nicoll, Douglas J. Tilley, Graeme J. Marlton, Stefan Chindea, Gavin P. Dingley, Pejman Iravani, David J. Cleaver, Jonathan L. du Bois, and David Brus. "Demonstration of a remotely piloted atmospheric measurement and charge release platform for geoengineering." Journal of Atmospheric and Oceanic Technology 38, no. 1 (2021): 63-75. https://doi.org/10.1175/JTECH-D-20-0092.1

 

 

Third Cycle Projects

Project Title: On the creation of updrafts for the formation of artificial clouds and rainfall

  1. Abshaev, M.T., Zakinyan, R.G., Abshaev, A.M., Al-Owaidi, Q.S.K., Kulgina, L.M., Zakinyan, A.R., Wehbe, Y., Yousef, L., Farrah, S. and Al Mandous, A., 2019. Influence of atmosphere near-surface layer properties on development of cloud convection. Atmosphere10(3), p.131. https://www.mdpi.com/2073-4433/10/3/131
  2. Pavlyuchenko, V.P., 2019. Generation of Artificial Updrafts in the Atmosphere by a Multilevel Facility. Bulletin of the Lebedev Physics Institute46(5), pp.165-169. https://doi.org/10.3103/S106833561905004X
  3. Abshaev, M.T., Abshaev, A.M., Zakinyan, R.G., Zakinyan, A.R., Wehbe, Y., Yousef, L., Farrah, S. and Al Mandous, A., 2020. Investigating the feasibility of artificial convective cloud creation. Atmospheric Research243, p.104998. https://doi.org/10.1016/j.atmosres.2020.104998

 

Project Title:Using Advanced Experimental - Numerical Approaches to Untangle Rain Enhancement (UAE-NATURE)

  1. Jing, X., Xue, L., Yin, Y., Yang, J., Steinhoff, D.F., Monaghan, A., Yates, D., Liu, C., Rasmussen, R., Taraphdar, S. and Pauluis, O., 2020. Convection-permitting regional climate simulations in the Arabian Gulf Region using WRF driven by bias-corrected GCM data. Journal of Climate33(18), pp.7787-7815.https://doi.org/10.1175/JCLI-D-20-0155.1
  2. Francis, D., Chaboureau, J.P., Nelli, N., Cuesta, J., Alshamsi, N., Temimi, M., Pauluis, O. and Xue, L., 2020. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, p.105364. https://doi.org/10.1016/j.atmosres.2020.105364
  3. Chen, S., Xue, L. and Yau, M.K., 2019. Impact of hygroscopic CCN and turbulence on cloud droplet growth: A parcel-DNS approach. Atmospheric Chemistry and Physics Discussions2019, pp.1-17. https://doi.org/10.5194/acp-2019-886
  4. Chen, S., Xue, L. and Yau, M.K., 2020. Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach. Atmospheric Chemistry and Physics20(17), pp.10111-10124. https://doi.org/10.5194/acp-20-10111-2020
  5. Grabowski, W.W., 2019. Separating physical impacts from natural variability using piggybacking (master-slave) technique. Advances in Geosciences49, pp.105-111. https://doi.org/10.5194/adgeo-49-105-2019
  6. Grabowski, W.W., 2020. Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics. Journal of the Atmospheric Sciences77(3), pp.1151-1165. https://doi.org/10.1175/JAS-D-19-0216.1

 

Additional related work to the project:

  1. Grabowski, W.W. and Prein, A.F., 2019. Separating dynamic and thermodynamic impacts of climate change on daytime convective development over land. Journal of Climate32(16), pp.5213-5234. https://doi.org/10.1175/JCLI-D-19-0007.1
  2. Ding, S., Liu, D., Zhao, D., Hu, K., Tian, P., Zhou, W., Huang, M., Yang, Y., Wang, F., Sheng, J. and Liu, Q., 2019. Size-related physical properties of black carbon in the lower atmosphere over Beijing and Europe. Environmental science & technology53(19), pp.11112-11121. https://doi.org/10.1021/acs.est.9b03722
  3. Ding, S., Zhao, D., He, C., Huang, M., He, H., Tian, P., Liu, Q., Bi, K., Yu, C., Pitt, J. and Chen, Y., 2019. Observed interactions between black carbon and hydrometeor during wet scavenging in mixed‐phase clouds. Geophysical Research Letters46(14), pp.8453-8463. https://doi.org/10.1088/1748-9326/ab4872
  4. Liu, D., Zhao, D., Xie, Z., Yu, C., Chen, Y., Tian, P., Ding, S., Hu, K., Lowe, D., Liu, Q. and Zhou, W., 2019. Enhanced heating rate of black carbon above the planetary boundary layer over megacities in summertime. Environmental Research Letters14(12), p.124003. https://doi.org/10.1088/1748-9326/ab4872
  5. Jiang, H., Yin, Y., Chen, K., Chen, Q., He, C. and Sun, L., 2020. The measurement of ice nucleating particles at Tai'an city in East China. Atmospheric Research232, p.104684. https://doi.org/10.1016/j.atmosres.2019.104684
  6. Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., Zhang, X. and Chen, J., 2019. The roles of mineral dust as cloud condensation nuclei and ice nuclei during the evolution of a hail storm. Journal of Geophysical Research: Atmospheres124(24), pp.14262-14284. https://doi.org/10.1029/2019JD031403
  7. Ding, S., Liu, D., Zhao, D., Hu, K., Tian, P., Zhou, W., Huang, M., Yang, Y., Wang, F., Sheng, J. and Liu, Q., 2019. Size-related physical properties of black carbon in the lower atmosphere over Beijing and Europe. Environmental science & technology53(19), pp.11112-11121. https://doi.org/10.1021/acs.est.9b03722
  8. Huang, Y., Wang, Y., Xue, L., Wei, X., Zhang, L. and Li, H., 2020. Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmospheric Research240, p.104939. https://doi.org/10.1016/j.atmosres.2020.104939
  9. Morrison, H., van Lier‐Walqui, M., Fridlind, A.M., Grabowski, W.W., Harrington, J.Y., Hoose, C., Korolev, A., Kumjian, M.R., Milbrandt, J.A., Pawlowska, H. and Posselt, D.J., 2020. Confronting the challenge of modeling cloud and precipitation microphysics. Journal of advances in modeling earth systems12(8), p.e2019MS001689. https://doi.org/10.1029/2019MS001689
  10. Tian, P., Liu, D., Zhao, D., Yu, C., Liu, Q., Huang, M., Deng, Z., Ran, L., Wu, Y., Ding, S. and Hu, K., 2020. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing. Atmospheric Chemistry and Physics20(4), pp.2603-2622. https://doi.org/10.5194/acp-20-2603-2020
  11. Zhao, D., Liu, D., Yu, C., Tian, P., Hu, D., Zhou, W., Ding, S., Hu, K., Sun, Z., Huang, M. and Huang, Y., 2020. Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing winter. Science of the Total Environment709, p.136251. https://doi.org/10.1016/j.scitotenv.2019.136251
  12. Geresdi, I., Xue, L., Sarkadi, N. and Rasmussen, R., 2020. Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. Journal of Applied Meteorology and Climatology59(9), pp.1537-1555. https://doi.org/10.1175/JAMC-D-19-0278.1
  13. Chen, J., Wu, X., Yin, Y. and Lu, C., 2020. Large‐scale circulation environment and microphysical characteristics of the cloud systems over the Tibetan Plateau in boreal summer. Earth and Space Science7(5), p.e2020EA001154. https://doi.org/10.1029/2020EA001154
  14. Mohan, T.S., Temimi, M., Ajayamohan, R.S., Nelli, N.R., Fonseca, R., Weston, M. and Valappil, V., 2020. On the investigation of the typology of fog events in an arid environment and the link with climate patterns. Monthly Weather Review148(8), pp.3181-3202. https://doi.org/10.1175/MWR-D-20-0073.1
  15. Thomas, L., Grabowski, W.W. and Kumar, B., 2020. Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model. Atmospheric Chemistry and Physics20(14), pp.9087-9100. https://doi.org/10.5194/acp-20-9087-2020

 

Applied Research Projects from UAEREP Outcomes

Project Title: KU-NCM Model Integration Project

PI: Dr. Diana Francis, Senior Scientist, ENGEOS Lab Head, Khalifa University

  1. Nelli, N.R., Temimi, M., Fonseca, R.M., Weston, M.J., Thota, M.S., Valappil, V.K., Branch, O., Wizemann, H.D., Wulfmeyer, V. and Wehbe, Y., 2020. Micrometeorological measurements in an arid environment: Diurnal characteristics and surface energy balance closure. Atmospheric Research234, p.104745. https://doi.org/10.1016/j.atmosres.2019.104745
  2. Fonseca, R., Temimi, M., Thota, M.S., Nelli, N.R., Weston, M.J., Suzuki, K., Uchida, J., Kumar, K.N., Branch, O., Wehbe, Y. and Al Hosari, T., 2020. On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting35(3), pp.891-919. https://doi.org/10.1175/WAF-D-19-0210.1
  3. Temimi, M., Fonseca, R., Nelli, N., Weston, M., Thota, M., Valappil, V., Branch, O., Wizemann, H.D., Kondapalli, N.K., Wehbe, Y. and Al Hosary, T., 2020. Assessing the impact of changes in land surface conditions on WRF predictions in arid regions. Journal of Hydrometeorology21(12), pp.2829-2853. https://doi.org/10.1175/JHM-D-20-0083.1
  4. Nelli, N.R., Temimi, M., Fonseca, R.M., Weston, M.J., Thota, M.S., Valappil, V.K., Branch, O., Wulfmeyer, V., Wehbe, Y., Al Hosary, T. and Shalaby, A., 2020. Impact of roughness length on WRF simulated land‐atmosphere interactions over a hyper‐arid region. Earth and Space Science7(6), p.e2020EA001165. https://doi.org/10.1029/2020EA001165
  5. Temimi, M., Fonseca, R.M., Nelli, N.R., Valappil, V.K., Weston, M.J., Thota, M.S., Wehbe, Y. and Yousef, L., 2020. On the analysis of ground-based microwave radiometer data during fog conditions. Atmospheric Research231, p.104652. https://doi.org/10.1016/j.atmosres.2019.104652
  6. Francis, D., Temimi, M., Fonseca, R., Nelli, N.R., Abida, R., Weston, M. and Whebe, Y., 2020. On the analysis of a summertime convective event in a hyperarid environment. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3930
  7. Francis, D., Chaboureau, J.P., Nelli, N., Cuesta, J., Alshamsi, N., Temimi, M., Pauluis, O. and Xue, L., 2020. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, p.105364. https://doi.org/10.1016/j.atmosres.2020.105364