Font size increaseFont size decrease

Scientific Publications - UAEREP Google Scholar Profile 

The UAE Research Program for Rain Enhancement Science awardees have published several scientific articles in peer-reviewed international journals during its 4 Cycles.

 

First Cycle Projects

Project Title: Nanotechnology to Develop Novel Cloud Seeding Materials for Rain Enhancement

PI: Prof. Linda Zou, Khalifa University, UAE

Final Project Report 

  1. Tai, Y., Liang, H., Zaki, A., El Hadri, N., Abshaev, A.M., Huchunaev, B.M., Griffiths, S., Jouiad, M. and Zou, L., 2017. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS nano11(12), pp.12318-12325. https://doi.org/10.1021/acsnano.7b06114    
  2. Lompar, M., Ćurić, M. and Romanic, D., 2017. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols. Atmospheric Research194, pp.164-177. https://doi.org/10.1016/j.atmosres.2017.04.037
  3. Lompar, M., Ćurić, M., Romanic, D., Zou, L. and Liang, H., 2018. Precipitation enhancement by cloud seeding using the shell structured TiO2/NaCl aerosol as revealed by new model for cloud seeding experiments. Atmospheric research212, pp.202-212. https://doi.org/10.1016/j.atmosres.2018.05.021
  4. Ćurić, M., Lompar, M. and Romanic, D., 2019. Implementation of a novel seeding material (NaCl/TiO2) for precipitation enhancement in WRF: Description of the model and spatiotemporal window tests. Atmospheric Research230, p.104638. https://doi.org/10.1016/j.atmosres.2019.104638
  5. Liang, H., Abshaev, M.T., Abshaev, A.M., Huchunaev, B.M., Griffiths, S. and Zou, L., 2019. Water vapor harvesting nanostructures through bioinspired gradient-driven mechanism. Chemical Physics Letters728, pp.167-173. https://doi.org/10.1016/j.cplett.2019.05.008
  6. Ćurić, M., Lompar, M., Romanic, D., Zou, L. and Liang, H., 2019. Three-Dimensional Modelling of Precipitation Enhancement by Cloud Seeding in Three Different Climate Zones. Atmosphere10(6), p.294. https://doi.org/10.3390/atmos10060294
  7. Liang, H., Möhler, O., Griffiths, S. and Zou, L., 2019. Enhanced Ice Nucleation and Growth by Porous Composite of RGO and Hydrophilic Silica Nanoparticles. The Journal of Physical Chemistry C124(1), pp.677-685. https://doi.org/10.1021/acs.jpcc.9b09749
  8. Bermeo, M., El Hadri, N., Ravaux, F., Zaki, A., Zou, L. and Jouiad, M., 2020. Adsorption Capacities of Hygroscopic Materials Based on NaCl-TiO2 and NaCl-SiO2 Core/Shell Particles. Journal of Nanotechnology2020. https://doi.org/10.1155/2020/3683629

 

Project Title:Advanced Study on Precipitation Enhancement in Arid and Semi-Arid Regions

PIProf. Mastaka Murakami, Meteorological Research Institute, Japan

Final Project Report 

  1. Hashimoto, A., Murakami, M. and Haginoya, S., 2017. First application of JMA-NHM to meteorological simulation over the United Arab Emirates. SOLA13, pp.146-150. http://doi.org/10.2151/sola.2017-027
  2. Hashimoto, A., Orikasa, N., Tajiri, T. and Murakami, M., 2017. Numerical prediction experiment over the United Arab Emirates by using JMA-NHM. JCAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling47, pp.5-07. http://bluebook.meteoinfo.ru/uploads/2017/docs/05_Hashimoto_Akihiro_Numerical_prediction_experiment_over_the_UAE.pdf
  3. Jung, W., Murakami, M., Shinoda, T. and Kato, M., 2018. Optimization of land surface parameters for weather simulations over arid and semi-arid regions. SOLA. https://doi.org/10.2151/sola.2018-035
  4. Kuo, T.H., Murakami, M., Tajiri, T. and Orikasa, N., 2019. Cloud condensation nuclei and immersion freezing abilities of Al2O3 and Fe2O3 particles measured with the Meteorological Research Institute’s Cloud Simulation Chamber. Journal of the Meteorological Society of Japan. Ser. II. https://doi.org/10.2151/jmsj.2019-032   
  5. Kumar, K.N. and Suzuki, K., 2019. Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sensing of Environment228, pp.90-104. https://doi.org/10.1016/j.rse.2019.04.024
  6. Orikasa, N., Murakami, M., Tajiri, T., Zaizen, Y. and Shinoda, T., 2020. In Situ Measurements of Cloud and Aerosol Microphysical Properties in Summertime Convective Clouds over Eastern United Arab Emirates. SOLA. https://doi.org/10.2151/sola.2020-032

 

Project Title:Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)

PI: Prof. Volker Wulfmeyer, University of Hohenheim, Germany

Final Project Report 

  1. Aldababseh, A., Temimi, M., Maghelal, P., Branch, O. and Wulfmeyer, V., 2018. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability10(3), p.803. https://doi.org/10.3390/su10030803
  2. Schwitalla, T., Branch, O. and Wulfmeyer, V., 2020. Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quarterly Journal of the Royal Meteorological Society146(727), pp.846-869. https://doi.org/10.1002/qj.3711
  3. Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., Wulfmeyer, V., Zhan, X., Liu, J. and Mandous, A.A., 2019. Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Natural Hazards and Earth System Sciences19(6), pp.1129-1149. https://doi.org/10.5194/nhess-19-1129-2019
  4. Branch, O., Behrendt, A., Gong, Z., Schwitalla, T. and Wulfmeyer, V., 2020. Convection Initiation over the Eastern Arabian Peninsula. Meteorologische Zeitschrift29, pp.67-77. https://doi.org/10.1127/metz/2019/0997
  5. Branch, O., Schwitalla, T., Temimi, M., Fonseca, R., Nelli, N., Weston, M., Milovac, J. and Wulfmeyer, V., 2020. Seasonal and diurnal performance of daily forecasts with WRF-NOAHMP V3. 8.1 over the United Arab Emirates. Geoscientific Model Development Discussions, pp.1-40. https://doi.org/10.5194/gmd-14-1615-2021
  6. Branch, O. and Wulfmeyer, V., 2019. Deliberate enhancement of rainfall using desert plantations. Proceedings of the National Academy of Sciences116(38), pp.18841-18847. https://doi.org/10.1073/pnas.1904754116
  7. Branch, O., Behrendt, A., Alnayef, O., Späth, F., Schwitalla, T., Temimi, M., Weston, M., Farrah, S., Al Yazeedi O., Tampi, S., de Waal, K., Wulfmeyer, V. (2021). Observing the Pre-Convective Environment and Convection Initiation with Doppler Lidar and Cloud Radar in the Al Hajar Mountains of the United Arab Emirates. Meteorologische Zeitschrift. https://doi.org/10.1127/metz/2021/1100
  8. Branch, O., Behrendt, A., Alnayef, O., Späth, F., Schwitalla, T., Temimi, M., Weston, M., Farah, S., de Waal, K., Tampi, S. and Al Yazeedi, O., 2022. The new Mountain Observatory of the Project “Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)” in the United Arab Emirates: First results on Convection Initiation. Authorea Preprints. https://www.essoar.org/doi/10.1002/essoar.10504992.1

 

Second Cycle Projects

Project Title: Microphysics of Convective Clouds and the Effects of Hygroscopic Seeding

PI: Dr. Paul Lawson, SPEC Inc., USA

Final Project Report 

  1. Morrison, H. and Peters, J.M., 2018. Theoretical expressions for the ascent rate of moist deep convective thermals. Journal of the Atmospheric Sciences75(5), pp.1699-1719. https://doi.org/10.1175/JAS-D-17-0295.1
  2. Morrison, H., Peters, J.M., Varble, A.C., Hannah, W.M. and Giangrande, S.E., 2020. Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. Journal of the Atmospheric Sciences77(11), pp.3637-3660. https://doi.org/10.1175/JAS-D-19-0243.1
  3. Peters, J.M., Morrison, H., Varble, A.C., Hannah, W.M. and Giangrande, S.E., 2020. Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. Journal of Atmospheric Sciences77(11), pp.3661-3681. https://doi.org/10.1175/JAS-D-19-0244.1
  4. Morrison, H., van Lier‐Walqui, M., Fridlind, A.M., Grabowski, W.W., Harrington, J.Y., Hoose, C., Korolev, A., Kumjian, M.R., Milbrandt, J.A., Pawlowska, H. and Posselt, D.J., 2020. Confronting the challenge of modeling cloud and precipitation microphysics. Journal of advances in modeling earth systems12(8), p.e2019MS001689. https://doi.org/10.1029/2019MS001689
  5. Grabowski, W.W. and Morrison, H., 2020. Do ultrafine cloud condensation nuclei invigorate deep convection?. Journal of Atmospheric Sciences77(7), pp.2567-2583. https://doi.org/10.1175/JAS-D-20-0012.1
  6. Pardo, L.H., Morrison, H., Machado, L.A., Harrington, J.Y. and Lebo, Z.J., 2020. Drop size distribution broadening mechanisms in a bin microphysics Eulerian model. Journal of the Atmospheric Sciences77(9), pp.3249-3273. https://doi.org/10.1175/JAS-D-20-0099.1
  7. Wehbe, Y., Tessendorf, S.A., Weeks, C., Bruintjes, R., Xue, L., Rasmussen, R., Lawson, P., Woods, S. and Temimi, M., 2021. Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates. Atmospheric Chemistry and Physics21(16), pp.12543-12560. https://doi.org/10.5194/acp-21-12543-2021
  8. Lawson, R.P., Bruintjes, R., Woods, S. and Gurganus, C., 2022. Coalescence and Secondary Ice Development in Cumulus Congestus Clouds. Journal of the Atmospheric Sciences79(4), pp.953-972. https://doi.org/10.1175/JAS-D-21-0188.1
  9. Morrison, H., Lawson, P. and Chandrakar, K.K., Observed and bin model simulated evolution of drop size distributions in high‐based cumulus congestus over the United Arab Emirates. Journal of Geophysical Research: Atmospheres, p.e2021JD035711. https://doi.org/10.1029/2021JD035711

 

Project Title: Optimization of Aerosol Seeding In rain enhancement Strategies (OASIS)

PI: Prof. Hannele Korhonen, Finnish Meteorological Institute, Finland

Final Project Report 

  1. Callewaert, S., Vandenbussche, S., Kumps, N., Kylling, A., Shang, X., Komppula, M., Goloub, P. and Mazière, M.D., 2019. The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and evaluation. Atmospheric Measurement Techniques12(7), pp.3673-3698. https://doi.org/10.5194/amt-12-3673-2019
  2. Roudsari, G., Reischl, B., Pakarinen, O.H. and Vehkamäki, H., 2019. Atomistic Simulation of Ice Nucleation on Silver Iodide (0001) Surfaces with Defects. The Journal of Physical Chemistry C124(1), pp.436-445. https://doi.org/10.1021/acs.jpcc.9b08502   
  3. Filioglou, M., Giannakaki, E., Backman, J., Kesti, J., Hirsikko, A., Engelmann, R., O'Connor, E., Leskinen, J.T., Shang, X., Korhonen, H. and Lihavainen, H., 2020. Optical and geometrical aerosol particle properties over the United Arab Emirates. Atmospheric Chemistry and Physics20(14), pp.8909-8922. https://doi.org/10.5194/acp-20-8909-2020
  4. Tonttila, J., Afzalifar, A., Kokkola, H., Raatikainen, T., Korhonen, H. and Romakkaniemi, S., 2021. Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA. Atmospheric Chemistry and Physics21(2), pp.1035-1048. https://doi.org/10.5194/acp-21-1035-2021
  5. Roudsari, G., Veshki, F.G., Reischl, B. and Pakarinen, O.H., 2021. Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching. The Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.1c01926
  6. Kesti, J., Backman, J., O'Connor, E.J., Hirsikko, A., Asmi, E., Aurela, M., Makkonen, U., Filioglou, M., Komppula, M., Korhonen, H. and Lihavainen, H., 2022. Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer. Atmospheric Chemistry and Physics22(1), pp.481-503. https://doi.org/10.5194/acp-22-481-2022
  7. Tonttila, J., Korpinen, A., Kokkola, H., Romakkaniemi, S., Fortelius, C. and Korhonen, H., 2022. Interaction between hygroscopic seeding and mixed-phase microphysics in convective clouds. Journal of Applied Meteorology and Climatology61(10), pp.1533-1547. https://doi.org/10.1175/JAMC-D-21-0183.1
  8. Kesti, J., O'Connor, E.J., Hirsikko, A., Backman, J., Lihavainen, H., Korhonen, H. and Asmi, E., 2023. How horizontal transport and turbulent mixing impacts aerosol particle and precursor concentrations at a background site in the UAE. Atmospheric Chemistry and Physics Discussions, pp.1-25. https://doi.org/10.5194/acp-2022-811

 

Project Title:Electrical Aspects of Rain Generation

PI: Prof. Giles Harrison, University of Reading, UK

  1. Nicoll, K., Harrison, G., Marlton, G. and Airey, M., 2020. Consistent dust electrification from Arabian Gulf sea breezes. Environmental Research Letters15(8), p.084050. https://doi.org/10.1088/1748-9326/ab9e20
  2. Harrison, R.G. and Marlton, G.J., 2020. Fair weather electric field meter for atmospheric science platforms. Journal of Electrostatics107, p.103489. https://doi.org/10.1016/j.elstat.2020.103489
  3. Harrison, R.G., Nicoll, K.A., Ambaum, M.H., Marlton, G.J., Aplin, K.L. and Lockwood, M., 2020. Precipitation modification by ionization. Physical review letters124(19), p.198701. https://doi.org/10.1103/PhysRevLett.124.198701
  4. Harrison, R. Giles, Keri A. Nicoll, Douglas J. Tilley, Graeme J. Marlton, Stefan Chindea, Gavin P. Dingley, Pejman Iravani, David J. Cleaver, Jonathan L. du Bois, and David Brus. "Demonstration of a remotely piloted atmospheric measurement and charge release platform for geoengineering." Journal of Atmospheric and Oceanic Technology 38, no. 1 (2021): 63-75. https://doi.org/10.1175/JTECH-D-20-0092.1
  5. Airey, M.W.; Nicoll, K.A.; Harrison, R.G.; Marlton, G.J. Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset. Atmosphere 202112, 1245. https://doi.org/10.3390/atmos12101245
  6. Ambaum, M.H.P., Auerswald, T., Eaves, R. and Harrison, R.G., 2022. Enhanced attraction between drops carrying fluctuating charge distributions. Proceedings of the Royal Society A478(2257), p.20210714. https://doi.org/10.1098/rspa.2021.0714

 

 

Third Cycle Projects

Project Title: On the creation of updrafts for the formation of artificial clouds and rainfall

PI: Dr. Ali Abshaev, Hail Suppresion Research Center (HSRC), Russia

  1. Abshaev, M.T., Zakinyan, R.G., Abshaev, A.M., Al-Owaidi, Q.S.K., Kulgina, L.M., Zakinyan, A.R., Wehbe, Y., Yousef, L., Farrah, S. and Al Mandous, A., 2019. Influence of atmosphere near-surface layer properties on development of cloud convection. Atmosphere10(3), p.131. https://www.mdpi.com/2073-4433/10/3/131
  2. Pavlyuchenko, V.P., 2019. Generation of Artificial Updrafts in the Atmosphere by a Multilevel Facility. Bulletin of the Lebedev Physics Institute46(5), pp.165-169. https://doi.org/10.3103/S106833561905004X
  3. Abshaev, M.T., Abshaev, A.M., Zakinyan, R.G., Zakinyan, A.R., Wehbe, Y., Yousef, L., Farrah, S. and Al Mandous, A., 2020. Investigating the feasibility of artificial convective cloud creation. Atmospheric Research243, p.104998. https://doi.org/10.1016/j.atmosres.2020.104998
  4. Abshaev, M.T., Abshaev, A.M., Aksenov, A.A., Fisher, I.V., Shchelyaev, A.E., Al Mandous, A., Wehbe, Y. and El-Khazali, R., 2022. CFD simulation of updrafts initiated by a vertically directed jet fed by the heat of water vapor condensation. Scientific Reports12(1), pp.1-24. https://doi.org/10.1038/s41598-022-13185-2
  5. Abshaev, M.T., Zakinyan, R.G., Abshaev, A.M., Zakinyan, A.R., Ryzhkov, R.D., Wehbe, Y. and Al Mandous, A., 2022. Atmospheric conditions favorable for the creation of artificial clouds by a jet saturated with hygroscopic aerosol. Atmospheric Research277, p.106323. https://doi.org/10.1016/j.atmosres.2022.106323
  6. Abshaev, M.T., Abshaev, A.M., Aksenov, A.A., Fisher, J.V., Shchelyaev, A.E., Mandous, A.A., Wehbe, Y. and El-Khazali, R., 2023. Study of the Possibility of Stimulating Cloud Convection by Solar Radiation Energy Absorbed in an Artificial Aerosol Layer. Atmosphere14(1), p.86. https://doi.org/10.3390/atmos14010086
  7. Abshaev, M.T., Abshaev, A.M., Aksenov, A.A., Fisher, J.V., Shchelyaev, A.E., Al Mandous, A., Al Yazeedi, O., Wehbe, Y., Sîrbu, E., Sîrbu, D.A. and Eremeico, S., 2023. Results of Field Experiments for the Creation of Artificial Updrafts and Clouds. Atmosphere14(1), p.136. https://doi.org/10.3390/atmos14010136

 

Project Title: Targeted observation and seeding using autonomous unmanned aircraft systems

PI: Prof. Eric Frew, University of Colorado Boulder, USA

  1. Frew, E., Glasheen, K., Hirst, C.A., Bird, J. and Argrow, B., 2020, March. A dispersed autonomy architecture for information-gathering drone swarms. In 2020 IEEE Aerospace Conference (pp. 1-11). IEEE. https://ieeexplore.ieee.org/document/9172646
  2. Weston, M., Temimi, M., Burger, R. and Piketh, S., 2021. A Fog Climatology at Abu Dhabi International Airport. Journal of Applied Meteorology and Climatology60(2), pp.223-236. https://doi.org/10.1175/JAMC-D-20-0168.1

 

Project Title:Using Advanced Experimental - Numerical Approaches to Untangle Rain Enhancement (UAE-NATURE)

PI: Dr. Lulin Xue, HXCZ, China

  1. Jing, X., Xue, L., Yin, Y., Yang, J., Steinhoff, D.F., Monaghan, A., Yates, D., Liu, C., Rasmussen, R., Taraphdar, S. and Pauluis, O., 2020. Convection-permitting regional climate simulations in the Arabian Gulf Region using WRF driven by bias-corrected GCM data. Journal of Climate33(18), pp.7787-7815.https://doi.org/10.1175/JCLI-D-20-0155.1
  2. Francis, D., Chaboureau, J.P., Nelli, N., Cuesta, J., Alshamsi, N., Temimi, M., Pauluis, O. and Xue, L., 2020. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, p.105364. https://doi.org/10.1016/j.atmosres.2020.105364
  3. Chen, S., Xue, L. and Yau, M.K., 2019. Impact of hygroscopic CCN and turbulence on cloud droplet growth: A parcel-DNS approach. Atmospheric Chemistry and Physics Discussions2019, pp.1-17. https://doi.org/10.5194/acp-2019-886
  4. Chen, S., Xue, L. and Yau, M.K., 2020. Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach. Atmospheric Chemistry and Physics20(17), pp.10111-10124. https://doi.org/10.5194/acp-20-10111-2020
  5. Grabowski, W.W., 2019. Separating physical impacts from natural variability using piggybacking (master-slave) technique. Advances in Geosciences49, pp.105-111. https://doi.org/10.5194/adgeo-49-105-2019
  6. Grabowski, W.W., 2020. Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics. Journal of the Atmospheric Sciences77(3), pp.1151-1165. https://doi.org/10.1175/JAS-D-19-0216.1
  7. Taraphdar, S., Pauluis, O.M., Xue, L., Liu, C., Rasmussen, R., Ajayamohan, R.S., Tessendorf, S., Jing, X., Chen, S. and Grabowski, W.W., 2021. WRF gray zone simulations of precipitation over the Middle‐East and the UAE: Impacts of physical parameterizations and resolution. Journal of Geophysical Research: Atmospheres, p.e2021JD034648. https://doi.org/10.1029/2021JD034648
  8. Xu, L., Xue, L. and Geresdi, I., 2020. How does the melting impact charge separation in squall line? A bin microphysics simulation study. Geophysical Research Letters, 47(21), p.e2020GL090840. https://doi.org/10.1029/2020GL090840
  9. Geresdi, I., Xue, L., Chen, S., Wehbe, Y., Bruintjes, R., Lee, J., Rasmussen, R., Grabowski, W., Sarkadi, N., and Tessendorf, S.: Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-506, in review, 2021.
  10. Chen, S., Xue, L. and Yau, M.K., 2021. Hygroscopic Seeding Effects of Giant Aerosol Particles Simulated by the Lagrangian‐Particle‐Based Direct Numerical Simulation. Geophysical Research Letters48(20), p.e2021GL094621. https://doi.org/10.1029/2021GL094621

 

Additional related work to the project:

  1. Grabowski, W.W. and Prein, A.F., 2019. Separating dynamic and thermodynamic impacts of climate change on daytime convective development over land. Journal of Climate32(16), pp.5213-5234. https://doi.org/10.1175/JCLI-D-19-0007.1
  2. Ding, S., Liu, D., Zhao, D., Hu, K., Tian, P., Zhou, W., Huang, M., Yang, Y., Wang, F., Sheng, J. and Liu, Q., 2019. Size-related physical properties of black carbon in the lower atmosphere over Beijing and Europe. Environmental science & technology53(19), pp.11112-11121. https://doi.org/10.1021/acs.est.9b03722
  3. Ding, S., Zhao, D., He, C., Huang, M., He, H., Tian, P., Liu, Q., Bi, K., Yu, C., Pitt, J. and Chen, Y., 2019. Observed interactions between black carbon and hydrometeor during wet scavenging in mixed‐phase clouds. Geophysical Research Letters46(14), pp.8453-8463. https://doi.org/10.1088/1748-9326/ab4872
  4. Liu, D., Zhao, D., Xie, Z., Yu, C., Chen, Y., Tian, P., Ding, S., Hu, K., Lowe, D., Liu, Q. and Zhou, W., 2019. Enhanced heating rate of black carbon above the planetary boundary layer over megacities in summertime. Environmental Research Letters14(12), p.124003. https://doi.org/10.1088/1748-9326/ab4872
  5. Jiang, H., Yin, Y., Chen, K., Chen, Q., He, C. and Sun, L., 2020. The measurement of ice nucleating particles at Tai'an city in East China. Atmospheric Research232, p.104684. https://doi.org/10.1016/j.atmosres.2019.104684
  6. Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., Zhang, X. and Chen, J., 2019. The roles of mineral dust as cloud condensation nuclei and ice nuclei during the evolution of a hail storm. Journal of Geophysical Research: Atmospheres124(24), pp.14262-14284. https://doi.org/10.1029/2019JD031403
  7. Ding, S., Liu, D., Zhao, D., Hu, K., Tian, P., Zhou, W., Huang, M., Yang, Y., Wang, F., Sheng, J. and Liu, Q., 2019. Size-related physical properties of black carbon in the lower atmosphere over Beijing and Europe. Environmental science & technology53(19), pp.11112-11121. https://doi.org/10.1021/acs.est.9b03722
  8. Huang, Y., Wang, Y., Xue, L., Wei, X., Zhang, L. and Li, H., 2020. Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmospheric Research240, p.104939. https://doi.org/10.1016/j.atmosres.2020.104939
  9. Morrison, H., van Lier‐Walqui, M., Fridlind, A.M., Grabowski, W.W., Harrington, J.Y., Hoose, C., Korolev, A., Kumjian, M.R., Milbrandt, J.A., Pawlowska, H. and Posselt, D.J., 2020. Confronting the challenge of modeling cloud and precipitation microphysics. Journal of advances in modeling earth systems12(8), p.e2019MS001689. https://doi.org/10.1029/2019MS001689
  10. Tian, P., Liu, D., Zhao, D., Yu, C., Liu, Q., Huang, M., Deng, Z., Ran, L., Wu, Y., Ding, S. and Hu, K., 2020. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing. Atmospheric Chemistry and Physics20(4), pp.2603-2622. https://doi.org/10.5194/acp-20-2603-2020
  11. Zhao, D., Liu, D., Yu, C., Tian, P., Hu, D., Zhou, W., Ding, S., Hu, K., Sun, Z., Huang, M. and Huang, Y., 2020. Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing winter. Science of the Total Environment709, p.136251. https://doi.org/10.1016/j.scitotenv.2019.136251
  12. Geresdi, I., Xue, L., Sarkadi, N. and Rasmussen, R., 2020. Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. Journal of Applied Meteorology and Climatology59(9), pp.1537-1555. https://doi.org/10.1175/JAMC-D-19-0278.1
  13. Chen, J., Wu, X., Yin, Y. and Lu, C., 2020. Large‐scale circulation environment and microphysical characteristics of the cloud systems over the Tibetan Plateau in boreal summer. Earth and Space Science7(5), p.e2020EA001154. https://doi.org/10.1029/2020EA001154
  14. Mohan, T.S., Temimi, M., Ajayamohan, R.S., Nelli, N.R., Fonseca, R., Weston, M. and Valappil, V., 2020. On the investigation of the typology of fog events in an arid environment and the link with climate patterns. Monthly Weather Review148(8), pp.3181-3202. https://doi.org/10.1175/MWR-D-20-0073.1
  15. Thomas, L., Grabowski, W.W. and Kumar, B., 2020. Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model. Atmospheric Chemistry and Physics20(14), pp.9087-9100. https://doi.org/10.5194/acp-20-9087-2020

 

Applied Research Projects from UAEREP Outcomes

Project Title: KU-NCM Model Integration Project

PI: Dr. Diana Francis, Senior Scientist, ENGEOS Lab Head, Khalifa University

  1. Nelli, N.R., Temimi, M., Fonseca, R.M., Weston, M.J., Thota, M.S., Valappil, V.K., Branch, O., Wizemann, H.D., Wulfmeyer, V. and Wehbe, Y., 2020. Micrometeorological measurements in an arid environment: Diurnal characteristics and surface energy balance closure. Atmospheric Research234, p.104745. https://doi.org/10.1016/j.atmosres.2019.104745
  2. Fonseca, R., Temimi, M., Thota, M.S., Nelli, N.R., Weston, M.J., Suzuki, K., Uchida, J., Kumar, K.N., Branch, O., Wehbe, Y. and Al Hosari, T., 2020. On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting35(3), pp.891-919. https://doi.org/10.1175/WAF-D-19-0210.1
  3. Temimi, M., Fonseca, R., Nelli, N., Weston, M., Thota, M., Valappil, V., Branch, O., Wizemann, H.D., Kondapalli, N.K., Wehbe, Y. and Al Hosary, T., 2020. Assessing the impact of changes in land surface conditions on WRF predictions in arid regions. Journal of Hydrometeorology21(12), pp.2829-2853. https://doi.org/10.1175/JHM-D-20-0083.1
  4. Nelli, N.R., Temimi, M., Fonseca, R.M., Weston, M.J., Thota, M.S., Valappil, V.K., Branch, O., Wulfmeyer, V., Wehbe, Y., Al Hosary, T. and Shalaby, A., 2020. Impact of roughness length on WRF simulated land‐atmosphere interactions over a hyper‐arid region. Earth and Space Science7(6), p.e2020EA001165. https://doi.org/10.1029/2020EA001165
  5. Temimi, M., Fonseca, R.M., Nelli, N.R., Valappil, V.K., Weston, M.J., Thota, M.S., Wehbe, Y. and Yousef, L., 2020. On the analysis of ground-based microwave radiometer data during fog conditions. Atmospheric Research231, p.104652. https://doi.org/10.1016/j.atmosres.2019.104652
  6. Francis, D., Temimi, M., Fonseca, R., Nelli, N.R., Abida, R., Weston, M. and Whebe, Y., 2020. On the analysis of a summertime convective event in a hyperarid environment. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3930
  7. Francis, D., Chaboureau, J.P., Nelli, N., Cuesta, J., Alshamsi, N., Temimi, M., Pauluis, O. and Xue, L., 2020. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, p.105364. https://doi.org/10.1016/j.atmosres.2020.105364
  8. Fonseca, R., Francis, D., Weston, M., Nelli, N., Farah, S., Wehbe, Y., AlHosari, T., Teixido, O. and Mohamed, R., 2021. Convection-Aerosol Interactions in the United Arab Emirates: A Sensitivity Study. Atmospheric Chemistry and Physics Discussions, pp.1-76. https://doi.org/10.5194/acp-2021-597
  9. Fonseca, R., Francis, D., Nelli, N. and Thota, M., 2022. Climatology of the heat low and the intertropical discontinuity in the Arabian Peninsula. International Journal of Climatology42(2), pp.1092-1117. https://doi.org/10.1002/joc.7291
  10. Nelli, N.R., Francis, D., Fonseca, R., Abida, R., Weston, M., Wehbe, Y. and Al Hosary, T., 2021. The atmospheric controls of extreme convective events over the southern Arabian Peninsula during the spring season. Atmospheric Research262, p.105788. https://doi.org/10.1016/j.atmosres.2021.105788
  11. Fonseca, R., Francis, D., Nelli, N., Farrah, S., Wehbe, Y., Al Hosari, T. and Al Mazroui, A., 2022. Assessment of the WRF model as a guidance tool into cloud seeding operations in the United Arab Emirates. Earth and Space Science9(5), p.e2022EA002269. https://doi.org/10.1029/2022EA002269
  12. Francis, D., Fonseca, R. and Nelli, N., 2022. Key Factors Modulating the Threat of the Arabian Sea's Tropical Cyclones to the Gulf Countries. Journal of Geophysical Research: Atmospheres127(12), p.e2022JD036528. https://doi.org/10.1029/2022JD036528